Gentzen systems for modal logic.

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rewrite Rule Systems for Modal Propositional Logic

D This paper explains new results relating modal propositional logic and rewrite rule systems. More precisely, we give complete term rewriting systems for the modal propositional systems known as K, Q, T, and S5. These systems are presented as extensions of Hsiang’s system for classical propositional calculus. We have checked local confluence with the rewrite rule system K.B. (cf. the Knuth-Ben...

متن کامل

Modular Sequent Systems for Modal Logic

We see cut-free sequent systems for the basic normal modal logics formed by any combination the axioms d, t,b, 4, 5. These systems are modular in the sense that each axiom has a corresponding rule and each combination of these rules is complete for the corresponding frame conditions. The systems are based on nested sequents, a natural generalisation of hypersequents. Nested sequents stay inside...

متن کامل

Focused Labeled Proof Systems for Modal Logic

Focused proofs are sequent calculus proofs that group inference rules into alternating negative and positive phases. These phases can then be used to define macro-level inference rules from Gentzen’s original and tiny introduction and structural rules. We show here that the inference rules of labeled proof systems for modal logics can similarly be described as pairs of such negative and positiv...

متن کامل

Deep Sequent Systems for Modal Logic

We see a systematic set of cut-free axiomatisations for all the basic normal modal logics formed by some combination the axioms d, t, b, 4, 5. They employ a form of deep inference but otherwise stay very close to Gentzen’s sequent calculus, in particular they enjoy a subformula property in the literal sense. No semantic notions are used inside the proof systems, in particular there is no use of...

متن کامل

Refutation systems in modal logic

Complete deductive systems are constructed for the non-valid (refutable) formulae and sequents of some propositional modal logics. Thus, complete syntactic characterizations in the sense of Lukasiewicz are established for these logics and, in particular, purely syntactic decision procedures for them are obtained. The paper also contains some historical remarks and a general discussion on refuta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Notre Dame Journal of Formal Logic

سال: 1974

ISSN: 0029-4527

DOI: 10.1305/ndjfl/1093891406